235 research outputs found

    Rietveld refinement for indium nitride in the 105-295 K range

    Get PDF
    Results of Rietveld refinement for indium nitride data collected in the temperature range 105-295 K are presented. Acicular microcrystals of indium nitride prepared by reaction of liquid indium with nitrogen plasma were studied by X-ray diffraction. The diffraction measurements were carried out at the Swiss-Norwegian Beamline SNBL (ESRF) using a MAR345 image-plate detector. Excellent counting statistics allowed for refinement of the lattice parameters of InN as well as those of the metallic indium secondary phase. In the studied temperature range, the InN lattice parameters show a smooth increase that can be approximated by a linear function. Lattice-parameter dependencies confirm the trends indicated earlier by data measured using a conventional equipment. The relative change of both the a and c lattice parameters with increasing the temperature in the studied range is about 0.05%. The axial ratio slightly decreases with rising temperature. The experimental value of the free structural parameter, u=0.3769(14), is reported for InN for the first time. Its temperature variation is found to be considerably smaller than the experimental error. The thermal-expansion coefficients (TECs), derived from the linearly approximated lattice-parameter dependencies, are αa=3.09(14)×10−6 K−1 and αc=2.79(16)×10−6 K−1. The evaluated TECs are generally consistent with the earlier data. For the present dataset, the accuracy is apparently higher for both, the lattice parameters and thermal-expansion coefficients, than for the earlier results. The refined lattice parameter cIn of the indium secondary phase exhibits the known strongly nonlinear behavior; a shift (ΔT equal about −50 K) of the maximum in cIn(T) dependence is observed with respect to the literature dat

    Near-forward Raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy

    Full text link
    We study the bulk and surface phonon-polaritons of the Zn0.67Be0.33Se zincblende alloy by near-forward Raman scattering. The short (Be-Se) bond exhibits a distinct percolation doublet in the conventional backscattering Raman spectra, corresponding to a three-mode behavior in total [1(Zn-Se),2(Be-Se)] for Zn0.67Be0.33Se. This offers an opportunity to achieve a refined understanding of the phonon-polariton modes of a zincblende alloy beyond the current two-mode approximation, corresponding to a [1(Zn-Se),1(Be-Se)] description in the present case. The discussion is supported by contour modeling of the Raman signals of the multi-mode bulk and surface phonon-polaritons within the formalism of the linear dielectric response

    Near-forward Raman selection rules of the phonon-polariton created by alloying in (Zn,Be)Se

    Full text link
    The Raman selection rules of the (ZnSe, BeSe) mixed phonon polariton created by alloying in the three mode (1ZnSe, 2BeSe) ZnBeSe system, whose dramatic S like dispersion covers the large frequency gap between the ZnSe and BeSe spectral ranges, is studied in its wave vector dependence by near forward scattering. Both the collapse regime away from the Brillouin zone centre and the reinforcement regime near the Brillouin zone centre are addressed, using appropriate laser lines and Be contents. We find that in both regimes the considered phonon polariton, in fact a transverse mode with mixed mechanical and electrical character, obeys the same nominal Raman selection rules as its purely mechanical variant commonly observed in the backscattering geometry. Besides, marked differences in the phonon polariton Raman lineshapes in the two regimes give a hint about how the phonon polariton electrical field E develops while descending the S like dispersion towards the Brillouin zone centre. In the reinforcement regime E is large, leading to intramode on top of intermode transfers of oscillator strength mediated by E between the two BeSe modes, that both exhibit a fine structure on account of the alloy disorder. In contrast, in the collapse regime E remains weak, as testified by the absence of intramode transfer. The discussion is supported by contour modeling of the multi phonon polariton Raman lineshapes in their wave vector dependence within the linear dielectric approach.Comment: 16 pages, 7 figure

    Negative Hall coefficient of ultrathin niobium in Si/Nb/Si trilayers

    Get PDF
    International audienceStructural and transport properties of thin Nb layers in Si/Nb/Si trilayers with Nb layer thickness d from 1.1 nm to 50 nm have been studied. With decreasing thickness, the structure of the Nb layer changes from polycrystalline to amorphous at d 3.3 nm, while the superconducting temperature T c monotonically decreases. The Hall coefficient varies with d systematically but changes sign into negative in ultrathin films with d < 1.6 nm. The influence of boundary scattering on the relaxation rate of carriers, and band broadening in the amorphous films, may contribute to this effect

    Atomic Transport in Dense, Multi-Component Metallic Liquids

    Full text link
    Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with incoherent, inelastic neutron scattering. As compared to simple liquids, liquid PdNiCuP is characterized by a dense packing with a packing fraction above 0.5. The intermediate scattering function exhibits a fast relaxation process that precedes structural relaxation. Structural relaxation obeys a time-temperature superposition that extends over a temperature range of 540K. The mode-coupling theory of the liquid to glass transition (MCT) gives a consistent description of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT scaling laws extrapolate to a critical temperature Tc at about 20% below the liquidus temperature. Diffusivities derived from the mean relaxation times compare well with Co diffusivities from recent tracer diffusion measurements and diffsuivities calculated from viscosity via the Stokes-Einstein relation. In contrast to simple metallic liquids, the atomic transport in dense, liquid PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a q^{-2} dependence of the mean relaxation times at intermediate q and a vanishing isotope effect as a result of a highly collective transport mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as fast as in simple liquids at the melting point. However, the difference in the underlying atomic transport mechanism indicates that the diffusion mechanism in liquids is not controlled by the value of the diffusivity but rather by that of the packing fraction
    corecore